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An Ultimate Frustration in Classical
Lattice-Gas Models
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A classical lattice-gas model is called frustrated if not all of its interactions can
attain their minima simultaneously. The antiferromagnetic Ising model on the
triangular lattice is a standard example.(1,29) However, in all such models
known so far, one could always find nonfrustrated interactions having the same
ground-state configurations. Here we constructed a family of classical lattice-gas
models with finite-range, translation-invariant, frustrated interactions and with
unique ground-state measures which are not unique ground-state measures of
any finite-range, translation-invariant, nonfrustrated interactions.

Our ground-state configurations are two-dimensional analogs of one-
dimensional, "most homogeneous,(13) nonperiodic ground-state configurations
of infinite-range, convex, repulsive interactions in models with devil's staircases.

Our models are microscopic (toy) models of quasicrystals which cannot be
stabilized by matching rules alone; competing interactions are necessary.

1. INTRODUCTION

We will discuss two families of systems of interacting objects located at
vertices of the square lattice. Our first family consists of two-dimensional
classical lattice-gas models. In such models, sites of the square lattice are
occupied by particles interacting through translation-invariant, finite-range
potentials. Configurations of particles minimizing the energy density of their
interactions are called ground-state configurations. It is an old and still
unsolved problem in solid-state physics, the so-called crystal problem,(2,8)

1 Institute of Applied Mathematics and Mechanics, Warsaw University, 02-097 Warsaw,
Poland; e-mail: miekisz(a mimuw.edu.pl.

KEY WORDS: Frustration; nonperiodic tilings; dynamical systems of finite
type; classical lattice-gas models; ground states; quasicrystals; devil's staircase.

285

0022-4715/98/0100-0285$15.00/0 © 1998 Plenum Publishing Corporation



286 Miekisz

Fig. 1. Tiles without horizontal and vertical markings.

to understand why ground-state configurations should have a perfect peri-
odic order of crystals or at least nonperiodic order of recently discovered
quasicrystals.(9,10)

A tiling system consists of a finite set of prototiles, the so-called Wang
tiles. Wang tiles are squares with markings (like notches and dents) on
their sides. These markings define matching rules which tell us which tiles
can be nearest neighbors. For example, in tiles in Figs. 1-3, markings are
represented by vertical, horizontal, and diagonal lines. Then the matching
rules say that these lines cannot be broken on common sides of nearest-
neighbor tiles and at common corners of next-nearest-neighbor tiles. Using
an infinite number of copies of given prototiles, one can tile the plane com-
pletely (centers of tiles form the square lattice) and without overlaps
(except boundaries of tiles) such that all matching rules are satisfied. Like
ground-state configurations, tilings are structures optimizing (maximizing)
the sum of local terms—satisfied matching rules. It is an outstanding
problem to understand why such structures are always ordered in some
sense.(11)

A natural generalization of tiling systems are systems of finite type.
Tiling systems are defined by specifying which pairs of tiles cannot be
nearest neighbors. In systems of finite type, we specify which finite patterns
of a fixed bounded size are not allowed.

For a given tiling system with n prototiles, we can construct the
following lattice-gas model with n types of particles corresponding to tiles.
Two nearest-neighbor particles which do not match as tiles have a positive
interaction energy, say 1; otherwise the energy of interaction is equal to
zero. Such interactions are obviously nonfrustrated; there are ground-state
configurations minimizing all of them simultaneously. There is a one-to-one
correspondence between such ground-state configurations and tilings of the
plane. In the same manner, a classical lattice-gas model can be constructed

Fig. 2. A cross.
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Fig. 3. Arms.

for any system of finite type. Details of this construction are given in
Section 2.

Here we restrict ourselves to models in which there may be many
tilings or ground-state configurations but there is only one translation-
invariant probability measure supported by them. Such systems are called
uniquely ergodic (one may prove that their unique measures are necessarily
ergodic with respect to space translations). In case of tilings, we say that
they form a single isomorphism class. In lattice-gas models, these unique
measures are called ground states. They are zero-temperature limits of
translation-invariant Gibbs states describing an equilibrium behavior of
systems of many interacting particles.(12)

It follows from the above construction that the family of uniquely
ergodic systems of finite type is contained in the family of uniquely ergodic
classical lattice-gas models with translation-invariant, finite-range inter-
actions. There are countably many different bounded patterns of tiles or
particles on the lattice and therefore countably many different finite-type
conditions and hence countably many uniquely ergodic systems of finite
type. The main result of this paper is a construction of an uncountable
family of lattice-gas models with finite-range interactions and with unique
ground states which are not unique ground states of any nonfrustrated,
translation-invariant, finite-range interactions and consequently not
uniquely ergodic measures of any system of finite type. These are measures
with an irrational density of different types of particles and are supported
by nonperiodic ground-state configurations. On the other hand, measures
supported by a periodic configuration and its translates are necessarily of
finite type.

Ground-state configurations of our models are two-dimensional analogs
of one-dimensional, "most homogeneous," nonperiodic configurations pre-
sent in models with infinite-range, convex, repulsive interactions.(13) Such
models exhibit a devil's staircase structure of ground states.(14-16) In



ground-state configurations of our models, particles of certain types occupy
lattice sites along vertical and horizontal lines. Distances between these
lines follow the rule of the most homogeneous configurations.

In Section 2, we describe systems of finite type and general classical
lattice-gas models with unique ground states. In Section 3, we discuss
a one-dimensional model with a devil's staircase. Section 4 contains our
construction of a classical lattice-gas model with an ultimate frustration.
A short discussion follows in Section 5.

2. TILINGS, SYSTEMS OF FINITE TYPE, AND
LATTICE-GAS MODELS

We begin by discussing tilings with square-like tiles. Our tiles are
squares with markings on their sides. These markings define matching rules
which tell us which tiles can be nearest neighbors. In every tiling, centers
of squares form the square lattice Z2. Tilings can be therefore represented
by assignments of tiles to the sites of Z2, i.e., by elements of Q = {1,..., n}z2,
where n is the number of different types of tiles, the so-called prototiles. We
are interested in uniquely ergodic tiling systems. In such systems, although
there are possibly many tilings, using the same family of prototiles, there
are unique translation-invariant probability measures on Q which are sup-
ported by them. If matching rules allow only translates of one periodic
tiling, then the unique tiling measure assigns an equal probability to all
of these translates. Generally, a unique tiling measure, p, gives equal
weights to all tilings and can be obtained as the limit of averaging over
a given tiling X and its translates T,X by lattice vectors aeZd: /* =
\ im A _ z d ( l / \A \ ) £«e/f <5(Ta^)> where d ( r a X ) is the probability measure
assigning probability 1 to raX. There are examples of tiling systems with
unique measures supported by nonperiodic tilings.(17-20)

A natural generalization of tiling systems are systems of finite type. Let
G be a translation-invariant, closed subset of Q and U a uniquely ergodic,
translation-invariant measure supported by G.

(Q,G,U) is a dynamical system of finite type, if there exist Cie
{1,..., n}Ai for some finite A/c Zd and i= 1,..., m such that

In other words, G is defined by the absence of a finite number of certain
local configurations.

In classical lattice-gas models, every site of the Z,d lattice, d^ 1, can be
occupied by one of n different particles. Configurations of lattice models are
assignments of particles to the lattice sites, i.e., elements of Q — {1,..., n } z d .
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If XzQ and /icZd, then X(A)eQA = {1,..., n}A is a projection of X on A.
Particles interact through generally many-body potentials. A potential 0 is
a family of real-valued functions, <PA on QA, for all finite A c Zd, If <PA = 0
when diam(A) > r for a certain r > 0, then we say that $ has a finite range r.
We assume that 0 is translation invariant, i.e., tf^ + Jr.A') = 0A(X), where
Ta is the translation by the lattice vector aeZ r f and <t>A(X) = 0 A ( X ( A ) ) .

For a finite A <= Zd, a Hamiltonian of particles in A can be written as

K is a local excitation of X, Y~ X, Y, XeQ, if there exists a finite
A^Zd, such that Y = X outside A.

The relative Hamiltonian is defined as

Observe, that for finite-range potentials, there are only a finite number of
nonzero terms in the above sum.

Xe Q is a ground-state configuration of a potential <P if

for every Y~ X, i.e., one cannot lower the energy of a ground-state con-
figuration by its local change (on a finite subset of lattice sites).

The energy density e(X) of a configuration X is defined as

where A -» Zd in some certain sense.
One can prove that if A' is a ground-state configuration, then X has

the minimal energy density, i.e., e(X)^e( Y) for every YeQ. It means that
local conditions contained in the definition of a ground-state configuration
force the global minimization of the energy density.

Although, for any given Hamiltonian, the set of ground-state configu-
rations is nonempty, it may not contain any periodic configuration. (21-24)

In our models, there is a unique translation-invariant probability
measure on Q, supported by ground-state configurations. It is then
necessarily the zero-temperature limit of equilibrium states (translation-
invariant Gibbs states ).(12) We call it the ground state of a given model.

A potential 0, for which there exists a configuration minimizing
simultaneously all interactions 4>A, is called nonfrustrated. Such a con-
figuration is of course a ground-state configuration.



Formally, a potential <P is nonfrustrated or is called an w-poten-
tial,(25-26) if there exists a configuration XeQ such that

for every finite A a Z,d.

Theorem 1. There is one-to-one correspondence between dynamical
systems of finite type and uniquely ergodic ground states of classical lattice-
gas models with nonfrustrated, translation-invariant, finite-range potentials.

Proof. Let (£2, (G,U) be a dynamical system of finite type defined by
the absence of C,, i= 1,..., m. We define a translation-invariant potential <J>
such that <PA(X(A)) = 1, if A is a translate of At for some i and X(A) = Ci,
and zero otherwise. <P is obviously nonfrustrated and u is the unique
ground state of <£.

Conversely, let <Z> be a nonfrustrated, translation-invariant, finite-range
potential with a unique ground state u supported by a set G of ground-
state configurations. Let XeQ be such that

3. ONE-DIMENSIONAL DEVIL'S STAIRCASES AND THE
MOST HOMOGENEOUS CONFIGURATIONS

One of the examples of a frustrated potential is provided by the
following lattice-gas model with infinite-range interactions.(13) Every site of
the one-dimensional lattice Z can be occuppied by one particle or be
empty. Particles at a distance n interact through a convex, repulsive poten-
tial Vn: V n>0, Vn + 1 + Vn_^2Vn for n>1, and Vn -> 0 as n -> oo. For
any given density p of particles, one can find the energy density e(p) of
ground-state configurations.(13) For any rational p, there is a unique (up

G is then defined by the absence of local configurations X(A) such that
<PA(X(A)) ^min r <t>A( Y). Hence ( Q , G , u ) is a dynamical system of finite
type. |

The goal of this paper is to construct a classical lattice-gas model with
a frustrated, translation-invariant, finite-range potential and with a uniquely
ergodic ground state u which is not a uniquely ergodic measure of any
dynamical system of finite type or equivalently not a ground state of any
nonfrustrated, translation-invariant, finite-range potential.
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Now, e(p) is differentiable at every irrational p and is nondifferentiable at
any rational p . ( l 5 ) However, as a convex function, it has a left derivative
d~e(p)/dp and a right derivative d+e(p)/dp at every p. It follows that to
have a ground state with an irrational density, p, of particles, one has to
fix h(p) = de(p)/dp. For any rational p, one has the interval of chemical
potentials h e [ d ~ e ( p ) / d p , d + e ( p ) / d p ] . One can show that the sum of
lengths of these intervals has the length of the interval of all considered
values of chemical potentials. We have obtained a complete devil's stair-
case.( l4,15)

As we have already mentioned, for any rational p, there is a unique
(up to translations) periodic ground-state configuration with that density
of particles—there is a unique ground-state measure. For any irrational p,
there are uncountably many ground-state configurations which are the
most homogeneous configurations. Now we will show that there is still the
unique ground-state measure supported by them.

Proposition 1. For any 0 ^p < 1, there exists a unique sequence dn

such that the corresponding most homogeneous configurations have p as
their density of particles.

Proof. Let p n ( d n ) be the density of pairs of particles which are the
nth neighbors at a distance dn in the most homogeneous configurations.
The following system of equations have unique solutions for dn and
0 ^ p n ( d n ) , p n ( d n + 1 ) ^ 1 , for any n^ 1:

to translations) periodic ground-state configuration with that density of
particles. It has the following property. Let .rie Z be a coordinate of the ith
particle. Then there exists a sequence of natural numbers dj such that
xi+j — x i e { d J , d j + 1} for every ieZ and jeN. Configurations with such
property are called the most homogeneous configurations.

Of course, if we do not fix the density, particles want to be as far one
from another as possible, so the vacuum is the only ground state. Now we
introduce a chemical potential h > 0 and pass to the grand-canonical
ensemble. Particles are now frustrated—they do not want to be on the lat-
tice because of the interactions between them and at the same time they
want to be on the lattice because of the chemical potential. To find the
energy density of a ground state we have to minimize
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Theorem 2. For any 0 < p < 1, there is a unique translation-
invariant probability measure (the ground state of the corresponding
Hamiltonian) supported by the most homogeneous configurations such
that p is their density of particles.

Proof by the Induction. Assume that there two such measures,
u1 and u2. Denote by u 1 ( d 1 ) the density, in u1, of pairs of two successive
particles at a distance d1 by u 1 ( d 1 , d 1 + 1) the density of triples of three
successive particles with successive distances d1 and d1 + 1, and generally,
by U 1 ( P n ) with Pn = (p1,..., pn), pie {d1,d1 + 1}, i=1,..., n, the density of
(n + 1 )th tuples of n + 1 successive particles with pi as successive distances
between them. Analogously, we introduce densities for U2. We will show
that U 1 ( P n ) = U 2 ( P n ) for every Pn and every n^1. We will use the induc-
tion on n.

The above equality for n = 1 follows from the fact that both u1 and u2

have the same density of particles.
Let « = 2. If P2 = ( d 1 , d1), then let P'2 = ( d 1 , d 1 + 1). Then

and therefore

We have

and therefore

All three remaining types of P2 can be treated in an analogous way.
Now assume the equality for any Pk with fixed k ^ 2. If Pk +1 is of the

form ( d 1 , P k - 1 , d 1 ) for some Pk-1 and P'k+1 = (d1 + 1, P k - 1 , d 1 ) , then

By the induction assumption the right-hand sides of (8) and (9) are equal
and hence the left-hand sides of (8) and (9) are equal. Now again by the
induction assumption we have
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All three remaining types of Pk+1 can be treated in an analogous way. |

To summarize, for every chemical potential, there is a unique ground
state of the corresponding Hamiltonian. Therefore, there are uncountably
many Hamiltonians with uniquely ergodic ground states.

One of the goals of this paper is to investigate if one can obtain similar
results in two-dimensional models with strictly finite-range interactions. Let
us mention at this point, that for any finite-range interaction in one dimen-
sion, there exists at least one periodic ground-state configuration.(27,28)

Hence a devil's staircase cannot appear in one-dimensional classical lattice
gas models with finite-range, translation-invariant interactions.

4. A MODEL WITH AN ULTIMATE FRUSTRATION

Let us first describe particles of our model. They correspond to square
tiles with diagonal, horizontal, and vertical markings. There is a tile
without any markings and there are tiles with one or two diagonal
markings as shown in Fig. 1. A tile with the horizontal, vertical, and two
diagonal markings is called a cross and is shown in Fig. 2. All other tiles
are called arms and are shown in Fig. 3.

Our first finite-type condition is a nearest-neighbor or a next-nearest-
neighbor matching rule which says that a line of markings cannot end. This
is translated into a nearest-neighbor or a next-nearest-neighbor interaction
between two particles in the standard way. Two nearest-neighbor or next-
nearest-neighbor particles which do not match as tiles have a positive inter-
action energy, J2 > 0; otherwise the energy is equal to zero.

Our second finite-type condition allows only certain patterns of five
vertically or horizontally successive tiles. Namely, among five vertically
successive tiles there must be at least one arm with the horizontal marking
or a cross and there cannot be two such tiles at a distance smaller than
four. Analogously, among five horizontally successive tiles there must be at
least one arm with the vertical marking or a cross and there cannot be two
such tiles at a distance smaller than four. Again, this is translated into a
five-body interaction by simply assigning a positive energy, J5 > 0, to all
forbidden patterns; allowed five-particle patterns have zero energy.

It follows that

and hence
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for every i and j.

Proof by the Induction. The five-site condition forces (13) to be
satisfied with d1 = 4. Now let us consider lines which are next-nearest
neighbors. Let us assume, without loss of generality, that xi+2 — xi = 10
and yj+2 — yj = 8. A diagonal line passing through a lattice site ( x i , yj)
intersects a horizontal line at a lattice site ( x i + 8 , y j + 8 ) which violates the
three-site condition. Conversely, if condition (13) is satisfied with d2 = 8 or
d2 = 9, or (14) or (15) with d = 9, then any diagonal line passing through
a lattice site ( x i , yj} intersects nearest and next-nearest horizontal and ver-
tical lines at a distance at most one from a cross.

or

or

Finally, we have a three-site condition which forces every arm with
diagonal markings to have a cross as one of its nearest neighbors. A respec-
tive coupling constant is denoted by J3 > 0.

A broken bond is a local configuration of particles which does not
satisfy a finite-site condition.

Now we will construct ground-state configurations of a lattice-gas
model with the above finite-range, translation-invariant interactions. Looking
just at horizontal and vertical markings we see an infinite grid of infinite
horizontal and vertical lines such that nearest-neighbor parallel lines are
at a distance four or five. These are the only configurations of particles
corresponding to tilings which satisfy the two-site and five-site conditions
described above. Now we will show that the three-site condition forces
distances between lines to follow the rule (discussed in Ch. 3) of the
most homogeneous configurations of particles on the one-dimensional
lattice Z.(13)

Proposition 2. Let X be a configuration which satisfies the two-site
and five-site conditions. Let x, be a double-sided sequence of x coordinates
of vertical lines and yj be a double-sided sequence of y coordinates of
horizontal lines in X. Then X satisfies the three-site condition (and there-
fore it is a ground-state configuration) if and only if there is a sequence of
natural numbers dn such that for every n > 1 either
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We will proceed now with the second step of the induction. The
following statement is assumed to be true: a diagonal line passing through
a lattice site (xi, yj) intersects k nearest horizontal and vertical lines at a
distance at most one from a cross, if and only if, for every n = 1,..., k, (13)
or (14) or (15) is satisfied for every i and j. Now we have to show that this
statement is true for k + 1. Let us assume, without loss of generality, that
xi+k - xt= dk+ 1 and yj+k-yj = dk. If xi+k +1 -xi+ls = 5 and v,+* + i-
-y /+* = 4, so none of the above conditions are satisfied, then the diagonal
line intersects a vertical line at a lattice site (xi+k + t, yj+k + 1 + 2) and a
horizontal line at a lattice site ( x i J r k J r \ — 2, yj+k + i), so the three-site con-
dition is violated. In all three remaining cases, ( 1 3 ) or (14) or (15) is
satisfied and intersections are at a distance at most one from a cross. |

Observe, that if at least for one n, (14 ) or (15 ) is satisfied for every i
and j then X is periodic, with a period dn in x or y direction respectively.
The density of arms is therefore rational; in fact it is equal to 2n/dn. Let
us note that our model has ground-state configurations with all possible
densities of horizontal and vertical markings (counted together) satisfying
following inequalities: 2/5</>m< 1/2. Therefore, it has uncountably many
different ground-state measures. On the other hand, if one fixes the irra-
tional density of horizontal and vertical markings, then our model has a
unique ground-state measure which we denote by ftfm. For any rational pm,
we have many ground-state measures. In both cases we have that the
density of crosses, pcr-(pm/2)2. Now we introduce chemical potentials,
hfr<0 for crosses and ha>0 for arms. For fixed pm, the energy density of
any configuration satisfying all finite-site conditions is given by a convex
function

822/90/1-2-20
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Minimization of f with respect to pm gives us

Now we will show that when the density of horizontal and vertical
markings, pm, is fixed, then nfw is the only ground state of the Hamiltonian
including all finite-site conditions and chemical potentials, and its energy
density is given by (16) and (17).

Proposition 3. If J5 is sufficiently big, then the density of broken
five-site bonds is equal to zero in any ground state.



Proof, If among five vertically (horizontally) successive particles in a
configuration X there are not any particles with the horizontal (vertical)
marking or there are particles with the horizontal (vertical) marking at a
distance smaller than four, then we either put there a particle with the
horizontal (vertical) marking or remove a particle with the horizontal (ver-
tical) marking. In may happen that we have to put or remove nearby some
particles with the horizontal (vertical) marking, in order not to create other
broken five-site bonds. During this process we may create some broken
two-site or three-site bonds. However, if Js is sufficiently big, the above
procedure decreases the energy and therefore the configuration X is not a
ground-state configuration. |

Now we will show that also the density of broken two-site and three-
site bonds is zero in any ground state with a fixed pm. Let p be a density
of broken bonds in a probability measure n which has zero density of
broken five-site bonds. Let n = 2m be such that 1 / n 2 < p . Let S={aeZ 2 :
0 s$ flj, a2 < n]. We call TbS, b e Z2, an r-square of a configuration X in the
support of n, if the number of vertical markings, nv, and the number of
horizontal markings, nh, satisfy the following inequalities:

for a natural number r > 1 and

for r = 1.

Proposition 4. If S is an r-square o( X, r> 1, then the number of
broken bonds, B, in X(S] is bigger than r2/9.

Proof. If r = 2, then it follows from Proposition 2 that there is a
broken bond in X(S). If r > 2, then we divide S into four squares of the size
n/2. If a smaller square is a 2-square (with n/2 in (18)), then there is a
broken bond in it. We call such a square a good square. If a smaller square
is a 1-square (with n/2 in (19)), then we call it a bad square. Every r-square
with r > 2 we divide again into four squares. We continue this procedure
untill all squares are either good or bad squares. Let D = Xi( r//2*')> where
the summation is with respect to all good and bad squares; ri = 2 for every
good square, r= = 1 for every bad one and ki is the number of divisions to
get a given square. We have that D ^ r. Let G be the number of good
squares. Proposition 2 tells us that B^G. Now we have to prove that
G>D2/9.
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The above division procedure can be represented by a hierarchical
directed tree with vertices corresponding to squares and edges joining a
square with its four subsquares. Good and bad squares are final vertices of
such tree. Among four final squares connected to a common square, there
must be at least one good square. Let us notice that when we enlarge a tree
by connecting a good square to three bad squares and one good square, we
increase D and leave G unchanged. Therefore, to prove the above bound,
it is sufficient to consider such trees that all good squares are of the same
size and no square is connected to more than one good square. Let k be
the smallest number such that all squares of size n/2k which are not final
ones, are connected to three bad squares and one good square. We may
also assume that there are no bad squares of sizes bigger than n/2k.
Otherwise, we could take a part of a tree connected to a square of size n/2k

(changing this square to a bad one) and connect it to a bad square of size
n/2k' with k' < k, increasing in this way D and not changing G. Let us
assume now that there are s bad squares of size n/2k; Q ^ s < 3 x 4 k - 1 . For
such a tree

It follows from (20) and (21) that

hence the induction step is finished.
The equality in (22) is attained in the infinite tree with k = s = 0. |

Theorem 3. For a fixed density of horizontal and vertical
markings, pm, for the Hamiltonian specified by chemical potentials hcr and
ha and all finite-type conditions described above, npm is the only ground
state.

Proof. If the density of horizontal markings, phm, is equal to the
density of vertical markings, pvm, then in the absence of broken horizontal
and vertical lines (broken two-site, nearest-neighbor bonds), pcr = (pm/2)2.
We may decrease the density of crosses but for every removed cross we
have to create a broken horizontal or vertical line and this increases the
energy if J2 is sufficiently big. It shows that in the case of phm = p v m ,up m is
the only ground state. Let us suppose now that phm^Pvm> Phm — Pm/2- a
and pvm = pm/2 + a, a >0. Again, let us assume first that there are no
broken horizontal and vertical lines. Then
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Hence, at most we may decrease the density of crosses by the amount on
the right-hand side of (25), so if J2, J3 >(10/4) \hcr\, then p = 0, if X is a
ground-state configuration. We had to put 10 instead of 9 in the bound in
order to deal with 1-squares by using l/n2<p. Of course, we may decrease
farther the density of crosses, but as before, for every removed cross we
have to create a broken line. |

To summarize, for a fixed chemical potential ha, for every irrational
density of horizontal and vertical markings, 2/5 ̂ pm^ 1/2, it follows from
(16) and (17) that there exists a chemical potential hcr given by

5. CONCLUSIONS

Two potentials are called equivalent if they have the same relative
Hamiltonians and therefore the same ground states and Gibbs states.

In ref. 29, we constructed a model with a frustrated, translation-
invariant, nearest-neighbor potential for which there does not exist an
equivalent, nonfrustrated, translation-invariant, finite-range potential. An
important feature of that model is the absence of periodic ground-state
configurations. However, there is a unique translation-invariant probability
measure—ground state—supported by nonperiodic ground-state configura-
tions. It was a first deterministic lattice-gas model in which a global mini-
mum of energy is not a sum of local (in space) minima. To be more precise,
one cannot minimize the energy of interacting particles by minimizing their
energy in a finite volume and all its translates, no matter how big is the

and by the Jensen's inequality we obtain

Denote by pr the density of r-squares and by p the density of broken bonds
in a configuration X. We have
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are uncountably many uniquely ergodic ground states on a phase diagram
of our model.



volume. In fact, if you take a finite box of any size and find a configuration
of particles in this box which minimizes the energy of their interactions,
then such a configuration, called a local ground-state configuration, cannot
be a part of an infinite-lattice ground-state configuration (compare also
ref. 30).

Here we constructed models with unique nonperiodic ground states
which are not unique ground states of any nonfrustrated potential, equiv-
alent or not. This extends substantially the result of ref. 29. The unique
ground state of the model discussed in ref. 29 is the unique ground state of
some nonfrustrated, translation-invariant, finite-range potential. Here we
have shown that the class of structures which are ground states of finite-
range potentials is larger that the family of ground states of nonfrustrated,
finite-range potentials. It means that our nonperiodic ground-state con-
figurations are represented by tilings without any local matching rules.

Such situation was investigated in microscopic models of quasicrystals.
Gahler and Jeong(31) studied octagonal Amman-Beenker tilings which do
not allow for perfect matching rules. They assigned negative energies to
certain clusters of tiles and provided some numerical evidence that ground-
state configurations of such interactions form a single isomorphism class
consisted of octagonal Amman-Beenker tilings.

To summarize, we have constructed a family of lattice-gas models with
frustrated, translation-invariant, finite-range interactions and with unique
ground states which are not unique ground states of any nonfrustrated,
translation-invariant, finite-range interaction.
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